代码随想录_数组04

209.长度最小的子数组

力扣题目链接(opens new window)

给定一个含有 n 个正整数的数组和一个正整数 s ,找出该数组中满足其和 ≥ s 的长度最小的 连续 子数组,并返回其长度。如果不存在符合条件的子数组,返回 0。

示例:

输入:s = 7, nums = [2,3,1,2,4,3] 输出:2 解释:子数组 [4,3] 是该条件下的长度最小的子数组。

思路

为了易于大家理解,我特意录制了B站视频拿下滑动窗口! | LeetCode 209 长度最小的子数组(opens new window)

暴力解法

这道题目暴力解法当然是 两个for循环,然后不断的寻找符合条件的子序列,时间复杂度很明显是O(n^2)。

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
int minSubArrayLen(int s, vector<int>& nums) {
int result = INT32_MAX; // 最终的结果
int sum = 0; // 子序列的数值之和
int subLength = 0; // 子序列的长度
for (int i = 0; i < nums.size(); i++) { // 设置子序列起点为i
sum = 0;
for (int j = i; j < nums.size(); j++) { // 设置子序列终止位置为j
sum += nums[j];
if (sum >= s) { // 一旦发现子序列和超过了s,更新result
subLength = j - i + 1; // 取子序列的长度
result = result < subLength ? result : subLength;
break; // 因为我们是找符合条件最短的子序列,所以一旦符合条件就break
}
}
}
// 如果result没有被赋值的话,就返回0,说明没有符合条件的子序列
return result == INT32_MAX ? 0 : result;
}
};

滑动窗口

接下来就开始介绍数组操作中另一个重要的方法:滑动窗口

所谓滑动窗口,就是不断的调节子序列的起始位置和终止位置,从而得出我们要想的结果

在暴力解法中,是一个for循环滑动窗口的起始位置,一个for循环为滑动窗口的终止位置,用两个for循环 完成了一个不断搜索区间的过程。

那么滑动窗口如何用一个for循环来完成这个操作呢。

首先要思考 如果用一个for循环,那么应该表示 滑动窗口的起始位置,还是终止位置。

如果只用一个for循环来表示 滑动窗口的起始位置,那么如何遍历剩下的终止位置?

此时难免再次陷入 暴力解法的怪圈。

所以 只用一个for循环,那么这个循环的索引,一定是表示 滑动窗口的终止位置。

那么问题来了, 滑动窗口的起始位置如何移动呢?

这里还是以题目中的示例来举例,s=7, 数组是 2,3,1,2,4,3,来看一下查找的过程:

209.长度最小的子数组

最后找到 4,3 是最短距离。

其实从动画中可以发现滑动窗口也可以理解为双指针法的一种!只不过这种解法更像是一个窗口的移动,所以叫做滑动窗口更适合一些。

在本题中实现滑动窗口,主要确定如下三点:

  • 窗口内是什么?
  • 如何移动窗口的起始位置?
  • 如何移动窗口的结束位置?

窗口就是 满足其和 ≥ s 的长度最小的 连续 子数组。

窗口的起始位置如何移动:如果当前窗口的值大于s了,窗口就要向前移动了(也就是该缩小了)。

窗口的结束位置如何移动:窗口的结束位置就是遍历数组的指针,也就是for循环里的索引。

解题的关键在于 窗口的起始位置如何移动,如图所示:

leetcode_209

可以发现滑动窗口的精妙之处在于根据当前子序列和大小的情况,不断调节子序列的起始位置。从而将O(n^2)暴力解法降为O(n)。

java代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
class Solution {

// 滑动窗口
public int minSubArrayLen(int s, int[] nums) {
int fastIndex = 0;
int slowIndex = 0;
int sum = 0;
int min_length = Interge.MAX_VALUE;
while(fastIndex<nums.length) {
sum += nums[fastIndex];
while(sum >= s){
sum -= nums[slowIndex++];

}
min_length = min_length < fastIndex - slowIndex+1 ? min_length:fastIndex - slowIndex+1;
fastIndex++;
}
return min_length == MAX_VALUE?0:min_length;
}
}

相关题目推荐