93.复原IP地址

力扣题目链接(opens new window)

给定一个只包含数字的字符串,复原它并返回所有可能的 IP 地址格式。

有效的 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 ‘.’ 分隔。

例如:”0.1.2.201” 和 “192.168.1.1” 是 有效的 IP 地址,但是 “0.011.255.245”、”192.168.1.312” 和 “192.168@1.1“ 是 无效的 IP 地址。

示例 1:

  • 输入:s = “25525511135”
  • 输出:[“255.255.11.135”,”255.255.111.35”]

示例 2:

  • 输入:s = “0000”
  • 输出:[“0.0.0.0”]

示例 3:

  • 输入:s = “1111”
  • 输出:[“1.1.1.1”]

示例 4:

  • 输入:s = “010010”
  • 输出:[“0.10.0.10”,”0.100.1.0”]

示例 5:

  • 输入:s = “101023”
  • 输出:[“1.0.10.23”,”1.0.102.3”,”10.1.0.23”,”10.10.2.3”,”101.0.2.3”]

提示:

  • 0 <= s.length <= 3000
  • s 仅由数字组成

#思路

做这道题目之前,最好先把131.分割回文串 (opens new window)这个做了。

这道题目相信大家刚看的时候,应该会一脸茫然。

其实只要意识到这是切割问题,切割问题就可以使用回溯搜索法把所有可能性搜出来,和刚做过的131.分割回文串 (opens new window)就十分类似了。

切割问题可以抽象为树型结构,如图:

93.复原IP地址

#回溯三部曲

  • 递归参数

131.分割回文串 (opens new window)中我们就提到切割问题类似组合问题。

startIndex一定是需要的,因为不能重复分割,记录下一层递归分割的起始位置。

本题我们还需要一个变量pointNum,记录添加逗点的数量。

所以代码如下:

1
2
3
vector<string> result;// 记录结果
// startIndex: 搜索的起始位置,pointNum:添加逗点的数量
void backtracking(string& s, int startIndex, int pointNum) {
  • 递归终止条件

终止条件和131.分割回文串 (opens new window)情况就不同了,本题明确要求只会分成4段,所以不能用切割线切到最后作为终止条件,而是分割的段数作为终止条件。

pointNum表示逗点数量,pointNum为3说明字符串分成了4段了。

然后验证一下第四段是否合法,如果合法就加入到结果集里

代码如下:

1
2
3
4
5
6
7
if (pointNum == 3) { // 逗点数量为3时,分隔结束
// 判断第四段子字符串是否合法,如果合法就放进result中
if (isValid(s, startIndex, s.size() - 1)) {
result.push_back(s);
}
return;
}
  • 单层搜索的逻辑

131.分割回文串 (opens new window)中已经讲过在循环遍历中如何截取子串。

for (int i = startIndex; i < s.size(); i++)循环中 [startIndex, i] 这个区间就是截取的子串,需要判断这个子串是否合法。

如果合法就在字符串后面加上符号.表示已经分割。

如果不合法就结束本层循环,如图中剪掉的分支:

93.复原IP地址

然后就是递归和回溯的过程:

递归调用时,下一层递归的startIndex要从i+2开始(因为需要在字符串中加入了分隔符.),同时记录分割符的数量pointNum 要 +1。

回溯的时候,就将刚刚加入的分隔符. 删掉就可以了,pointNum也要-1。

代码如下:

1
2
3
4
5
6
7
8
9
for (int i = startIndex; i < s.size(); i++) {
if (isValid(s, startIndex, i)) { // 判断 [startIndex,i] 这个区间的子串是否合法
s.insert(s.begin() + i + 1 , '.'); // 在i的后面插入一个逗点
pointNum++;
backtracking(s, i + 2, pointNum); // 插入逗点之后下一个子串的起始位置为i+2
pointNum--; // 回溯
s.erase(s.begin() + i + 1); // 回溯删掉逗点
} else break; // 不合法,直接结束本层循环
}

#判断子串是否合法

最后就是在写一个判断段位是否是有效段位了。

主要考虑到如下三点:

  • 段位以0为开头的数字不合法
  • 段位里有非正整数字符不合法
  • 段位如果大于255了不合法

代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 判断字符串s在左闭又闭区间[start, end]所组成的数字是否合法
bool isValid(const string& s, int start, int end) {
if (start > end) {
return false;
}
if (s[start] == '0' && start != end) { // 0开头的数字不合法
return false;
}
int num = 0;
for (int i = start; i <= end; i++) {
if (s[i] > '9' || s[i] < '0') { // 遇到非数字字符不合法
return false;
}
num = num * 10 + (s[i] - '0');
if (num > 255) { // 如果大于255了不合法
return false;
}
}
return true;
}

总结

131.分割回文串 (opens new window)中我列举的分割字符串的难点,本题都覆盖了。

而且本题还需要操作字符串添加逗号作为分隔符,并验证区间的合法性。

可以说是131.分割回文串 (opens new window)的加强版。

在本文的树形结构图中,我已经把详细的分析思路都画了出来,相信大家看了之后一定会思路清晰不少!

Java代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class Solution {
List<String> result = new ArrayList<>();

public List<String> restoreIpAddresses(String s) {
if (s.length() > 12) return result; // 算是剪枝了
backTrack(s, 0, 0);
return result;
}

// startIndex: 搜索的起始位置, pointNum:添加逗点的数量
private void backTrack(String s, int startIndex, int pointNum) {
if(pointNum == 3) {
if(isValid(s,startIndex,s.length() -1)) result.add(s);
return;
}
for(int i=startIndex;i<s.length();i++) {
if(isVaild(s,startIndex,i)) {
s = s.substring(0,i+1) +"."+substring(i+1);
pointNum++;
backtracking(s,i+2,pointNum);
pointNum--;
s = s.substring(0,i+1)+s.substring(i+2);
} else break;
}
}
public boolean isValid(String s,int start;int end) {
if (s.charAt(start) == '0' && start != end) { // 0开头的数字不合法
return false;
}
int num = 0;
for (int i = start; i <= end; i++) {
if (s.charAt(i) > '9' || s.charAt(i) < '0') { // 遇到⾮数字字符不合法
return false;
}
num = num * 10 + (s.charAt(i) - '0');
if (num > 255) { // 如果⼤于255了不合法
return false;
}
}
return true;
}
}