46.全排列

力扣题目链接(opens new window)

给定一个 没有重复 数字的序列,返回其所有可能的全排列。

示例:

  • 输入: [1,2,3]
  • 输出: [ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]

#思路

**如果对回溯算法基础还不了解的话,我还特意录制了一期视频:带你学透回溯算法(理论篇) (opens new window)**可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。

此时我们已经学习了77.组合问题 (opens new window)131.分割回文串 (opens new window)78.子集问题 (opens new window),接下来看一看排列问题。

相信这个排列问题就算是让你用for循环暴力把结果搜索出来,这个暴力也不是很好写。

所以正如我们在关于回溯算法,你该了解这些! (opens new window)所讲的为什么回溯法是暴力搜索,效率这么低,还要用它?

因为一些问题能暴力搜出来就已经很不错了!

我以[1,2,3]为例,抽象成树形结构如下:

46.全排列

#回溯三部曲

  • 递归函数参数

首先排列是有序的,也就是说 [1,2] 和 [2,1] 是两个集合,这和之前分析的子集以及组合所不同的地方

可以看出元素1在[1,2]中已经使用过了,但是在[2,1]中还要在使用一次1,所以处理排列问题就不用使用startIndex了。

但排列问题需要一个used数组,标记已经选择的元素,如图橘黄色部分所示:

46.全排列

代码如下:

1
2
3
vector<vector<int>> result;
vector<int> path;
void backtracking (vector<int>& nums, vector<bool>& used)
  • 递归终止条件

46.全排列

可以看出叶子节点,就是收割结果的地方。

那么什么时候,算是到达叶子节点呢?

当收集元素的数组path的大小达到和nums数组一样大的时候,说明找到了一个全排列,也表示到达了叶子节点。

代码如下:

1
2
3
4
5
// 此时说明找到了一组
if (path.size() == nums.size()) {
result.push_back(path);
return;
}
  • 单层搜索的逻辑

这里和77.组合问题 (opens new window)131.切割问题 (opens new window)78.子集问题 (opens new window)最大的不同就是for循环里不用startIndex了。

因为排列问题,每次都要从头开始搜索,例如元素1在[1,2]中已经使用过了,但是在[2,1]中还要再使用一次1。

而used数组,其实就是记录此时path里都有哪些元素使用了,一个排列里一个元素只能使用一次

代码如下:

1
2
3
4
5
6
7
8
for (int i = 0; i < nums.size(); i++) {
if (used[i] == true) continue; // path里已经收录的元素,直接跳过
used[i] = true;
path.push_back(nums[i]);
backtracking(nums, used);
path.pop_back();
used[i] = false;
}

Java代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
List<List<Integer>> result = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
boolean[] used;
public List<List<Integer>> permute(int[] nums) {
if (nums.length == 0){
return result;
}
used = new boolean[nums.length];
backtracking(nums);
return res;
}
public void backtracking(int[] nums) {
if(path.size() == nums.length) {
res.add(new ArrayList<>(path));
return;
}
for(int i = 0;i<nums.length;i++) {
if(used[i]) {
continue;
}
used[i] = true;
path.add(nums[i]);
backtracking(nums);
path.removeLast();
used[i] = false;
}
}