全排列_回溯10
排列问题(二)
#47.全排列 II
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
- 输入:nums = [1,1,2]
- 输出: [[1,1,2], [1,2,1], [2,1,1]]
示例 2:
- 输入:nums = [1,2,3]
- 输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
提示:
- 1 <= nums.length <= 8
- -10 <= nums[i] <= 10
#思路
**如果对回溯算法基础还不了解的话,我还特意录制了一期视频:带你学透回溯算法(理论篇) (opens new window)**可以结合题解和视频一起看,希望对大家理解回溯算法有所帮助。
这道题目和46.全排列 (opens new window)的区别在与给定一个可包含重复数字的序列,要返回所有不重复的全排列。
这里又涉及到去重了。
在40.组合总和II (opens new window)、90.子集II (opens new window)我们分别详细讲解了组合问题和子集问题如何去重。
那么排列问题其实也是一样的套路。
还要强调的是去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了。
我以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:
图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。
一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果。
在46.全排列 (opens new window)中已经详解讲解了排列问题的写法,在40.组合总和II (opens new window)、90.子集II (opens new window)中详细讲解的去重的写法,所以这次我就不用回溯三部曲分析了,直接给出代码,如下:
#C++代码
1 | class Solution { |
#拓展
大家发现,去重最为关键的代码为:
1 | if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) { |
**如果改成 used[i - 1] == true
, 也是正确的!**,去重代码如下:
1 | if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) { |
这是为什么呢,就是上面我刚说的,如果要对树层中前一位去重,就用used[i - 1] == false
,如果要对树枝前一位去重用used[i - 1] == true
。
对于排列问题,树层上去重和树枝上去重,都是可以的,但是树层上去重效率更高!
这么说是不是有点抽象?
来来来,我就用输入: [1,1,1] 来举一个例子。
树层上去重(used[i - 1] == false),的树形结构如下:
树枝上去重(used[i - 1] == true)的树型结构如下:
大家应该很清晰的看到,树层上对前一位去重非常彻底,效率很高,树枝上对前一位去重虽然最后可以得到答案,但是做了很多无用搜索
Java代码如下:
1 | //存放结果 |