509. 斐波那契数

力扣题目链接(opens new window)

斐波那契数,通常用 F(n) 表示,形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1 给你n ,请计算 F(n) 。

示例 1:

  • 输入:2
  • 输出:1
  • 解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

  • 输入:3
  • 输出:2
  • 解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

  • 输入:4
  • 输出:3
  • 解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30

#思路

斐波那契数列大家应该非常熟悉不过了,非常适合作为动规第一道题目来练练手。

因为这道题目比较简单,可能一些同学并不需要做什么分析,直接顺手一写就过了。

但「代码随想录」的风格是:简单题目是用来加深对解题方法论的理解的

通过这道题目让大家可以初步认识到,按照动规五部曲是如何解题的。

对于动规,如果没有方法论的话,可能简单题目可以顺手一写就过,难一点就不知道如何下手了。

所以我总结的动规五部曲,是要用来贯穿整个动态规划系列的,就像之前讲过二叉树系列的递归三部曲 (opens new window)回溯法系列的回溯三部曲 (opens new window)一样。后面慢慢大家就会体会到,动规五部曲方法的重要性。

#动态规划

动规五部曲:

这里我们要用一个一维dp数组来保存递归的结果

  1. 确定dp数组以及下标的含义

dp[i]的定义为:第i个数的斐波那契数值是dp[i]

  1. 确定递推公式

为什么这是一道非常简单的入门题目呢?

因为题目已经把递推公式直接给我们了:状态转移方程 dp[i] = dp[i - 1] + dp[i - 2];

  1. dp数组如何初始化

题目中把如何初始化也直接给我们了,如下:

1
2
dp[0] = 0;
dp[1] = 1;
  1. 确定遍历顺序

从递归公式dp[i] = dp[i - 1] + dp[i - 2];中可以看出,dp[i]是依赖 dp[i - 1] 和 dp[i - 2],那么遍历的顺序一定是从前到后遍历的

  1. 举例推导dp数组

按照这个递推公式dp[i] = dp[i - 1] + dp[i - 2],我们来推导一下,当N为10的时候,dp数组应该是如下的数列:

0 1 1 2 3 5 8 13 21 34 55

如果代码写出来,发现结果不对,就把dp数组打印出来看看和我们推导的数列是不是一致的。

Java代码如下:

递归打法

1
2
3
4
5
public int fib(int n) {
if(n==1) return 0;
if(n <= 2) return 1;
return fib(n-1) + fib(n-2);
}

动态规划打法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
// 版本一
public int fib(int n) {
// 首先知道dp的含义是什么? 以及下标是什么意思
int[] dp = new int[n];
// 初始化
dp[0] = 0;
dp[1] = 1;
for(int i = 2;i < n;i++) {
dp[i] = dp[i-1] + dp[i-2];
}
return dp[n-1];
}
// 版本二
public int fib(int n) {
int [] dp = new int[2];
dp[0] = 0;
dp[1] = 1;
for(int i = 2;i < n;i++) {
int sum = dp[0] + dp[1];
dp[0] = dp[1];
dp[1] = sum;
}
return dp[1];
}